International

August 2008 Automotive Grade AUIR33401S

PROTECTED HIGH SIDE SWITCH FOR AUTOMOTIVE DC MOTOR DRIVE

Features

- Up to 20Khz PWM switching capability
- Charge pump for DC operation
- Active Dv/Dt control
- Load current feedback
- Short-circuit protection
- Programmable over current shutdown
- Over temperature shutdown
- Under voltage shutdown
- Gnd, IN and bootstrap pin loss protection
- E.S.D protection
- Low power mode
- Leadfree, RoHS compliant
- Automotive qualified*

Description

The AUIR33401S is a 7 terminals high side switch for variable speed DC motor. It features simplify the design of the DC motor drive with a microcontroller. The Mosfet switches the power load proportionally to the input signal duty cycle at the same frequency and provides a current feedback on the lfbk pin. The over-current shutdown is programmable from 10A to 33A. Over-current, over-temperature latch OFF the power switch, providing a digital diagnostic status on the input pin. In sleep mode, the device consumes less than 10uA.

Further integrated protections such as ESD, GND and Cboot disconnect protection guarantee safe operation in harsh conditions of the automotive environment.

Product Summary

Rds(on)@25°C	$3.5m\Omega$ max.
Max current	33A
Operating voltage	6 – 18V

Application

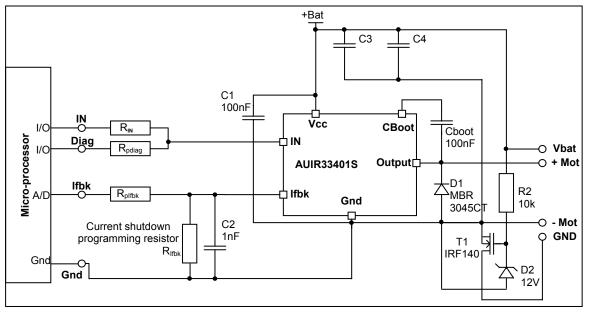
- Fan engine cooling
- Air conditioning blower
- Pumps (oil, fuel, water...)
- Compressor

Package

Qualification Information[†]

Qualification Level		Automotive (per AEC-Q100 ^{††}) Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.		
Moisture Sensitivity Level		7L-DDPAK	MSL1, 260°C (per IPC/JEDEC J-STD-020)	
ESD	Machine Model	Class M3 (per AEC-Q-100-003)		
	Human Body Model	Class H2 (per AEC-Q-100-002)		
	Charged Device Model	Class C5 (per AEC-Q-100-011)		
RoHS Compliant		Yes		

t Qualification standards can be found at International Rectifier's web site http://www.irf.com/


tt Exceptions to AEC-Q100 requirements are noted in the qualification report.

ww.irf.com © 2007 International Rectifier	2
---	---

Design: basic schematic with micro-processor

The basic circuit is giving all the functionality to drive a motor up to 33A DC. R_{fbk} set both the level current shutdown and the current feedback reading scale. The IN signal provides the Pwm duty cycle to the AUIR33401S. D1 is the free wheeling diode during PWM operation. As the equivalent circuit between Vbat and – Mot is 2 diode in series (the body diode of the AUIR33401S and D1), the system requires T1, D2, R1 and R2 to sustain the reverse battery.

Recommended connection with reverse battery protection ¹:

This is the recommended schematic with an optional reverse battery¹. The recommended load is an inductive load. This part may not be suitable for application conditions other than those specified above. Please contact IR's Automotive Technical support for further details on other applications requirement.

DC to 20 kHz operation

The AUIR33401S is able to operate in DC and high speed switching operation. To be able to switch at 20 kHz, a bootstrap capacitor is used externally. The device integrates the power supply of the bootstrap capacitor. In DC operation, when the capacitor is discharged, the charge pump maintains the device ON.

¹ The reverse battery is optional. Remove T1, D2, R2 and connect –Mot to Gnd to remove the features.

ww.irf.com	© 2007 International Rectifier	3
		•

Active dv/dt control to reduce EMI Typical Connection

The AUIR33401S includes a special gate drive, managing the Mosfet dv/dt controlled internally, by managing the gate voltage dynamically. To have the best compromise between the EMI levels and power loss, during the turn on and off phase, the dv/dt output is dv/dt is not linear. The output voltage shape is an "S" shape.

Sense Load current feedback and programmable current shutdown

The lfbk pin allows an analog measurement of the load current and with an external resistor allows to program the over current shutdown level from 10A to 33A. The voltage threshold level of the lfbk pin is internally set to 4V (See the formulas below). It is also possible to dynamically adjust the current shutdown protection versus time by adding some external components. This protection is latched. The operating mode is recovered after resetting by the sleep mode.

Rifbk	$= \frac{\text{Vifbk} - \text{gnd min}}{\text{Imax appli} + \text{Offset}} \times \text{Ratio min}$	
Ishtd	max = $\frac{\text{Vifbk} - \text{gnd max}}{\text{Rifbk} \text{ calculated}} \times \text{Ratio max} + \text{Offset}$	Where: Imax appli is the maximum application current Ishtd max is the maximum output shutdown current

Internal over current shutdown

The maximum current shutdown threshold value is internally fixed to 50A typ. This protection is latched. The operating mode is recovered after resetting by the sleep mode.

Under voltage lock-out

The AUIR33401S remains operational from UV Lo threshold. Under this continuous voltage, the device will be locked until the voltage recovers the operating range, according to an internal hysteresis fixed to 0,5V min. The maximum rating voltage is given by the Trench VDMOS technology where the avalanche voltage is up to 43V typically.

Sleep mode and reset fault:

The sleep mode is enabled if the IN pin stay low (Vin < $V_{in \mu power}$) more than TsIp time. The consumption in sleep mode is Icc off. The AUIR33401S wakes up at first rise edge on the IN pin (Vin > $V_{in \mu power}$). This mode allows resetting all the latched faults. (Cf. Figure 2: Wake sequence, sleep mode and reset latched fault.)

Wake up sequence:

The AUIR33401S has a power on reset. After wake up it by the IN signal, the devices wait for $T_{pwr_on_rst}$ before activate the output power mosfet. This time is necessary to charge properly the bootstrap capacitor and to stabilize the internal power supply. (Cf. Figure 2: Wake sequence, sleep mode and reset latched fault.)

ww.irf.com	© 2007 International Rectifier	4
------------	--------------------------------	---

In pin and digital diagnostic

The IN has two functions. In normal working condition, the output follows the IN pin digital level. In latched fault condition (over current and over temperature shutdown), the IN pin provides a digital frequency signal feedback to the µ-processor.

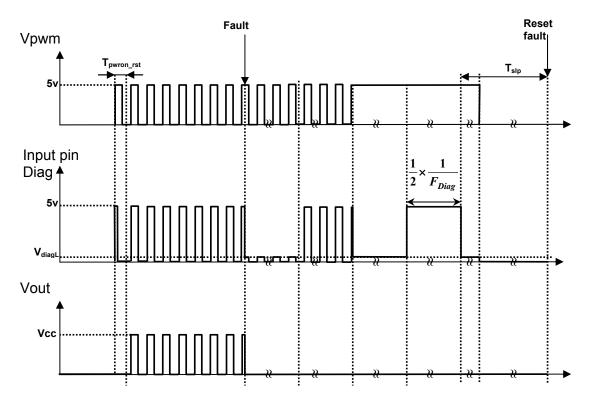


Figure 2: Wake sequence, sleep mode and reset latched fault.

ww.irf.com	© 2007 International Rectifier	5
ww.in.com		5

International

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to Vcc lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vout	Maximum output voltage	Gnd-5v	Vcc+0.3	V
Vin	Maximum input voltage	-0.3	5.5	V
Vcc max.	Maximum Vcc voltage	—	36	V
Vcc cont	Maximum continuous Vcc voltage	—	28	V
lin, max.	Maximum input current	-0.3	10	mA
Pd	Maximum power dissipation Rth=60°C/W	_	2	W
ESD1	Electrostatic discharge voltage (Human body) C=100pF, R=1500 Ω	_	4	kV
ESD2	Charge device model (CDM)	_	1	
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C
Tsoldering	Soldering temperature (10 seconds)	_	300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient	60	—	°C/W
Rth2	Thermal resistance junction to case	0.65		0/11

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
Vcc max.	Power supply voltage	6	18	V
lout	DC output current Tj=145°C, Tamb=85°C, Rth=5°C/W	—	33	А
C _{boot}	Bootstrap capacitor	100	220	nF
R _{IN}	Recommended resistor in series with In pin	1	10	kΩ
R _{pdiag}	Recommended resistor in series with In pin to read the diagnostic	10	50	kΩ
RIfbk	Recommended resistor to program over current shutdown	0.6	5	kΩ
R _{plfbk}	Recommended resistor in series with R _{Ifbk} pin to read the current feedback	10	25	kΩ
F max.	Maximum input frequency	_	20	kHz

ww.irf.com	© 2007 International Rectifier	6
------------	--------------------------------	---

Static Electrical Characteristics

Tj=25°C, Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
	ON state resistance Tj=25°C	_	3	3.5		lout=30A
Rds(on)	ON state resistance Tj=25°C	_	3	3.5	mΩ	lout=17A Vcc=6V
	ON state resistance Tj=150°C ²	_	5.5	_		lout=30A
Vf	Forward voltage of the body diode	0.55	_	1.1	V	
Icc off	Supply current in µPower mode		1	10	μA	Vin=0V
Icc on	Gnd current when the device is on	_	3	5	mA	I_Cboot = 0A Out = 0V
Mos Lkg on	Output leakage when the MOSFET is off and the device is woken up	_	8.5	15	mA	
V _{brk}	Breakdown voltage between Vcc and Vout	39	43	_	V	
V _{in µpower}	Input threshold voltage to enter in µpower mode	0.6	0.8	_	V	
VIL	IN Low threshold voltage	2	2.5	—	V	
VIH	IN High threshold voltage	_	2.8	3	V	
V _{in Hyst}	Input hysteresis	0.25	_	0.8	V	
lin, on	On state input current	10	20	30	μA	Vin = 5v
lboot	Bootstrap current charge	0.5	_	1.3	А	Vout = 0V Cboot =500nF
Vboot	Bootstrap voltage		5.4		V	
V _{diagL}	Low level diagnostic output voltage			0.4	V	Vin = 5V Rin = $1k\Omega$

Switching Electrical Characteristics Vcc=14V, Inductive load= 1Ω resistor, Tj=25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Td on	Turn-on delay time	0.5	1.35	1.8	μs	
Tr	Rise time	—	1		μs	
dv/dt(on)	Turn on dv/dt	8	20	30	V/µs	
Td off	Turn-off delay time	1.5	2.5	3.8	μs	
Tf	Fall time	_	1	_	μs	
dv/dt(off)	Turn off dv/dt	8	20	30	V/µs	

² Guaranteed by design

Protection Characteristics

Vcc=14V, Tj=25°C (unless otherwise specified).

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Vifbk - Gnd	Over current threshold voltage	3.8	4	4.15	V	
lsd	Maximum over current shutdown	40	50	80	А	
lsd 1k	Current shutdown Rifbk = 1k	18	25	33	А	
Tsd	Over temperature threshold	155	165	175	°C	
UV Ho	Under voltage turn on	_	5	5.7	V	
UV Lo	Under voltage turn off	_	4.2	4.8	V	
UV Hyst	Under voltage hysteresis	0.5	0.8	1.5	V	
Tslp	Sleep mode time and fault reset	20	30	50	ms	
T _{pwr on rst}	Power on reset time	7	8.5	15	μs	
Fdiag	diagnostic frequency		250		Hz	

Current Sense Characteristics

Tj=25°C (unless otherwise specified), Rifb=1k Ω

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Offset	Load current diagnostic offset	-3	0.18	3	Α	
Ratio	I load / (Ifb – Offset)	5250	6400	7450		

Leads Assignment

PART NUMBER	AUIR33401S
1 : I _{fbk} 2 : IN 3 : Gnd 4 : Vcc (Tab) 5 : C _{Boot} 6 : OUT	TER THE
7 : OUT	D2Pak 7 leads

ww.irf.com	© 2007 International Rectifier	8
------------	--------------------------------	---

International **IOR** Rectifier

AUIR33401S

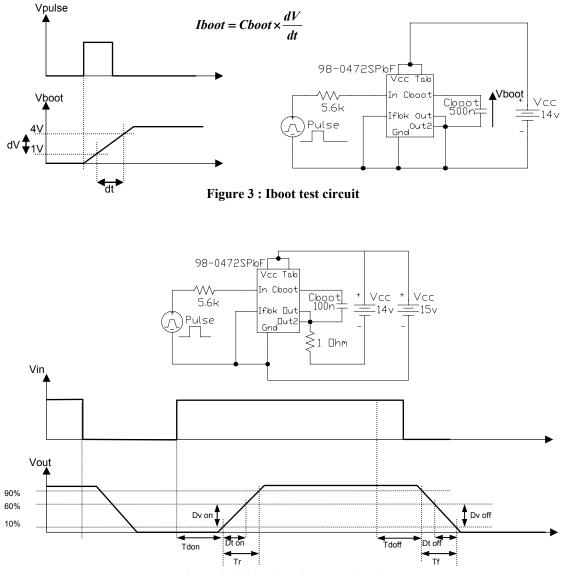
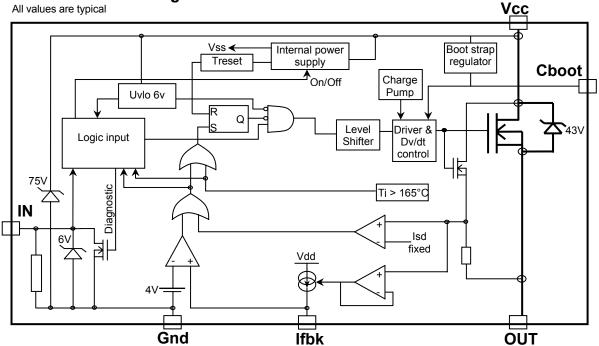
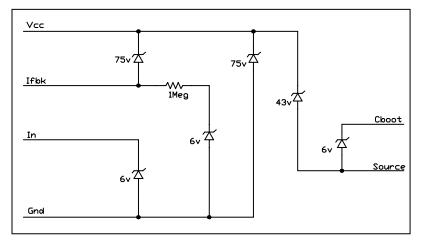



Figure 4 : Switching time test circuit


ww.irf.com	© 2007 International Rectifier	9
------------	--------------------------------	---

Functional Block Diagram All values are typical

Internal diode schematic

All values are typical

International



Figure 5: Input parameters vs. temperature

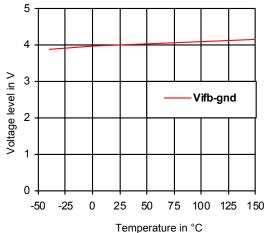


Figure 6: Vifb-gnd vs. temperature

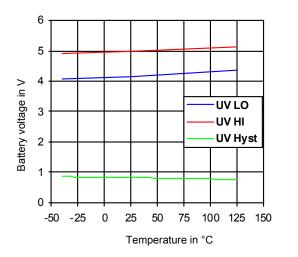


Figure 7: Under voltage parameters vs. temperature

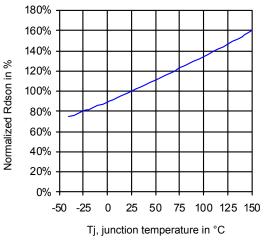


Figure 8: Normalized Rdson Vs Tj

ww.irf.com	© 2007 International Rectifier	11

International

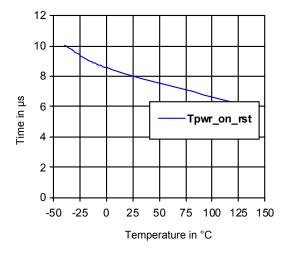


Figure 9: Tpwr_on_rst vs. temperature

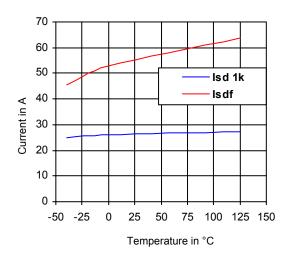


Figure 11: Current shutdown vs. temperature

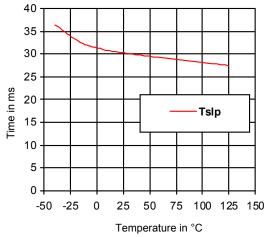
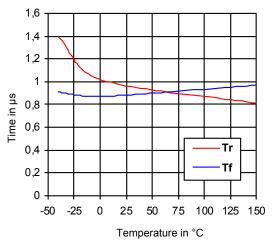



Figure 10: Tslp vs. temperature

ww.irf.com	© 2007 International Rectifier	12
		1

International

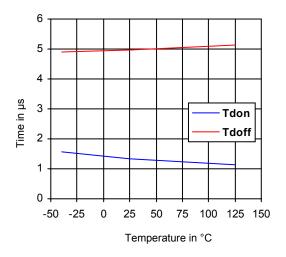


Figure 13: Tdon & off vs. temperature

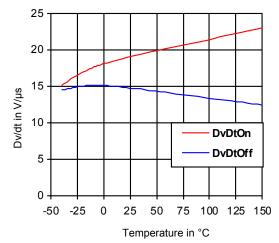
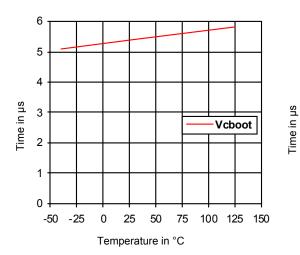



Figure 14: Dv/dt on & off vs. temperature

1,0

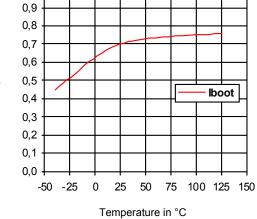
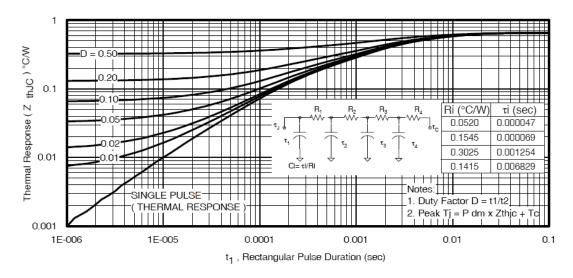


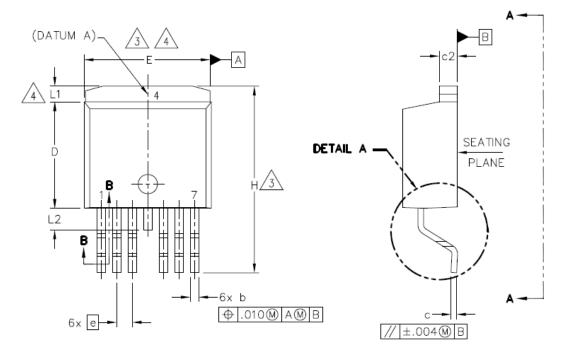
Figure 15: Bootstrap voltage vs. temperature

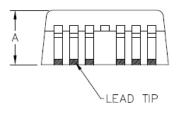
Figure 16: Current bootstrap vs. temperature

ww.irf.com	© 2007 International Rectifier	13

International **IOR** Rectifier




Figure 17: Transient thermal impedance vs. time


ww.irf.com	© 2007 International Rectifier	14
ww.irf.com	© 2007 International Rectifier	14

International

AUIR33401S

Case Outline 7L D2PAK

ww.irf.com	© 2007 International Rectifier	15
ww.intooni		10

- SEATING PLANE

∕₅∖

SECTION B-B

BASE METAL

 $\sqrt{5}$

International

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB.

0							
S Y		DIMEN	SIONS		N		
В	B MILLIMETERS INCHES		MILLIMETERS		HES	Ŭ	
L	MIN.	MAX.	MIN.	MAX.	E S	GAUGE	
А	4.06	4.83	.160	.190		PLANE	
A1	_	0.254	-	.010		0'-8'	
b	0.51	0.99	.020	.036			
b1	0.51	0.89	.020	.032	5		
с	0.38	0.74	.015	.029		ROTATED 90° CW	
c1	0.38	0.58	.015	.023	5	SCALE 8:1	
c2	1.14	1.65	.045	.065			
D	8.38	9.65	.330	.380	3		
D1	6.86	-	.270		4	(E)	
Ε	9.65	10.67	.380	.420	3,4	PLATING	
E1	6.22	-	.245		4		
е	2.54	BSC	.050	BSC			
Н	14.61	15.88	.575	.625			
L	1.78	2.79	.070	.110			
L1	-	1.68	-	.066	4		
L2	-	1.78	-	.070			
L3	0.25 BSC		.010 BSC			<u>VIEW A-A</u>	
L4	4.78	5.28	.188	.208			
	M B O L A A A b b C c C C D D C E I E I E I L L L L Z L J	M MILLIM 0 MIN. A 4.06 A1 - b 0.51 b1 0.51 c1 0.38 c1 0.38 c2 1.14 D 8.38 D1 6.86 E 9.65 E1 6.22 e 2.54 H 14.61 L 1.78 L1 - L2 - L3 0.25	M MILLIMETERS 0 MIN. MAX. A 4.06 4.83 A1 - 0.254 b 0.51 0.99 b1 0.51 0.89 c 0.38 0.74 c1 0.38 0.58 c2 1.14 1.65 D 8.38 9.65 D1 6.86 - E 9.65 10.67 E1 6.22 - e 2.54 BSC H 14.61 15.88 L 1.78 2.79 L1 - 1.68 L2 - 1.78 L3 0.25 BSC	M MILLIMETERS INC M MILLIMETERS INC A 4.06 4.83 .160 A1 - 0.254 - b 0.51 0.99 .020 b1 0.51 0.89 .020 c 0.38 0.74 .015 c1 0.38 0.58 .015 c2 1.14 1.65 .045 D 8.38 9.65 .330 D1 6.86 - .270 E 9.65 10.67 .380 E1 6.22 - .245 e 2.54 BSC .050 H 14.61 15.88 .575 L 1.78 2.79 .070 L1 - 1.68 - L2 - 1.78 - L3 0.25 BSC .010	M MILLIMETERS INCHES A 4.06 4.83 .160 .190 A1 - 0.254 - .010 b 0.51 0.99 .020 .036 b1 0.51 0.89 .020 .032 c 0.38 0.74 .015 .029 c1 0.38 0.58 .015 .023 c2 1.14 1.65 .045 .065 D 8.38 9.65 .330 .380 D1 6.866 - .270	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

> WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

ww.irf.com	© 2007 International Rectifier	17
ww.in.com		17

Revision History

Revision	Date	Notes/Changes
А	25/07/08	First release

ww.irf.com	© 2007 International Rectifier	18
------------	--------------------------------	----